Vesicular ATP Is the Predominant Cause of Intercellular Calcium Waves in Astrocytes
نویسندگان
چکیده
Brain astrocytes signal to each other and neurons. They use changes in their intracellular calcium levels to trigger release of transmitters into the extracellular space. These can then activate receptors on other nearby astrocytes and trigger a propagated calcium wave that can travel several hundred micrometers over a timescale of seconds. A role for endogenous ATP in calcium wave propagation in hippocampal astrocytes has been suggested, but the mechanisms remain incompletely understood. Here we explored how calcium waves arise and directly tested whether endogenously released ATP contributes to astrocyte calcium wave propagation in hippocampal astrocytes. We find that vesicular ATP is the major, if not the sole, determinant of astrocyte calcium wave propagation over distances between approximately 100 and 250 microm, and approximately 15 s from the point of wave initiation. These actions of ATP are mediated by P2Y1 receptors. In contrast, metabotropic glutamate receptors and gap junctions do not contribute significantly to calcium wave propagation. Our data suggest that endogenous extracellular astrocytic ATP can signal over broad spatiotemporal scales.
منابع مشابه
Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation.
Electrophysiological properties of gap junction channels and mechanisms involved in the propagation of intercellular calcium waves were studied in cultured spinal cord astrocytes from sibling wild-type (WT) and connexin43 (Cx43) knock-out (KO) mice. Comparison of the strength of coupling between pairs of WT and Cx43 KO spinal cord astrocytes indicates that two-thirds of total coupling is attrib...
متن کاملATP released from astrocytes mediates glial calcium waves.
Calcium waves represent a widespread form of intercellular communication. Although they have been thought for a long time to require gap junctions, we recently demonstrated that mouse cortical astrocytes use an extracellular messenger for calcium wave propagation. The present experiments identify ATP as a major extracellular messenger in this system. Medium collected from astrocyte cultures dur...
متن کاملIntercellular calcium signaling in astrocytes via ATP release through connexin hemichannels.
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in individual cells. Astrocytes showed low Ca...
متن کاملMechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes.
The mechanisms involved in the initiation and the propagation of intercellular calcium signaling (calcium waves) were studied in cultured rat astrocytes. The analysis of calcium waves, induced either by mechanical stimulation or by focal application of ionomycin, indicated that initiation was dependent on the presence of external calcium. In addition, pharmacological experiments indicate that i...
متن کاملPropagation of intercellular calcium waves in retinal astrocytes and Müller cells.
Intercellular Ca(2+) waves are believed to propagate through networks of glial cells in culture in one of two ways: by diffusion of IP(3) between cells through gap junctions or by release of ATP, which functions as an extracellular messenger. Experiments were conducted to determine the mechanism of Ca(2+) wave propagation between glial cells in an intact CNS tissue. Calcium waves were imaged in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 129 شماره
صفحات -
تاریخ انتشار 2007